Нобелевскую премию по химии в 2021 году получили отцы асимметрического органокатализа

 

5bb534bf7966e104e8a61aec

Нобелевскую премию по химии 2021 года присудили за довольно маленькие молекулы. Причем некоторые из них совсем не новые — аминокислоту пролин, например, открыли еще в 1900 году. Но прелесть их не в новизне, а в том, как они смогли себя проявить уже в XXI веке. Рассказываем, для чего сегодняшним лауреатам пришло в голову их использовать и как это поможет избежать медицинских трагедий.

На рубеже 1950-х и 60-х годов тысячи европейских детей появились на свет с тяжелыми пороками развития. У кого-то был недоразвит пищевод или мочевой пузырь, другим не хватало ушных раковин, третьим — пальцев, локтей или голеней, а то и целых конечностей. Такие аномалии встречались особенно часто у тех, чьи матери в первый месяц беременности принимали талидомид — успокоительное средство, которое незадолго до этого вышло на рынок. А через полтора десятка лет выяснилось, что проблема не в принципе действия лекарства — а в том, что около трети молекул действующего вещества в каждой его таблетке были не той формы.

Злое отражение

Талидомид — одна из тех молекул, у которых зеркальное отражение не совпадает с ними самими (их называют хиральными). Состав у них одинаковый, но некоторые свойства — разные. В хиральности талидомида виноват один из атомов углерода, который входит в его состав. Этот углерод образует четыре одинарные связи, и все — с разными химическими группами. А у его зеркального отражения эти группы расположены в другой последовательности — как пальцы на правой и левой руках, которые одинаковы по строению, но следуют друг за другом в разном порядке.

паа

Смесь из двух вариантов талидомида получается естественным образом на производстве. Но в 1950-х годах никто не позаботился о том, чтобы ее разделить. А зря. Технически, зеркально отраженные молекулы талидомида (их называют оптическими изомерами или энантиомерами) — это то же самое вещество: идентичные наборы атомов объединены в одни и те же группы одними и теми же связями. Но из-за того, что у них разная форма, для клетки это две принципиально разные молекулы. В некоторых случаях это приводит к тому, что лекарство просто становится бесполезным. В случае с талидомидом оно превратилось в яд.

Через пять лет после выхода на рынок талидомид оказался под запретом в большинстве стран — а ученые остались разбираться с последствиями.

Надзор за формой

В живой природе контролем за хиральной чистотой обычно занимаются ферменты — поскольку именно они отвечают за превращения биологических молекул. Для того, чтобы ускорить, то есть катализировать эти превращения, ферментам служит активный центр — это карман сложной формы, в который заходят участники реакции. Собирая их вместе, фермент подталкивает вещества к тому, чтобы те вступили во взаимодействие, — в тесноте вероятность этого гораздо выше, чем если бы они просто плавали рядом в растворе. А в результате этого тесного взаимодействия образуется всегда один и тот же энантиомер.

Но использовать ферменты для синтеза лекарств очень непросто. Во-первых, они привыкли жить внутри клетки и не всегда соглашаются работать, например, при высоких температурах, которые бывают нужны для синтеза органических веществ в промышленном «котле». Во-вторых, их самих довольно сложно раздобыть — для этого приходится строить инкубаторы, заселять их генетически модифицированными клетками и ждать, пока они нарастят нужное количество фермента.

Еще больше времени может занять поиск фермента под конкретную реакцию. В природе никакого талидомида не существует, как не существует и многих других нужных людям лекарств — а значит, может не найтись и фермента, который смог бы их синтезировать. Приходится либо искать похожие реакции в клеточном обмене веществ, либо заставлять ферменты эволюционировать и надеяться, что они сделают это в нужном нам направлении

Поэтому фармкомпаниям вместо капризных ферментов катализаторами, как правило, служат атомы металлов. Они могут объединяться в комплексы с органическими молекулами, умеют отдавать и принимать электроны, чем активируют участников реакции и побуждают их вступить во взаимодействие, чтобы восстановить электронный баланс. Но атомы металлов слишком малы и слишком симметричны, чтобы развернуть молекулу нужной стороной, — а значит, не способны проконтролировать хиральность продукта. На выходе получается смесь энантиомеров, которые нужно разделять, что тоже довольно сложно и затратно.

Эту проблему решили лауреаты Нобелевской премии по химии, которую вручили 20 лет назад: Уильям Ноулз, Рёдзи Ноёри и Барри Шарплесс. Они научились делать катализаторы из асимметричных органических молекул, соединенных с атомом металла: таким образом на выходе образовывался нужный энантиомер. Их разработки быстро нашли применение в фармацевтической промышленности, благодаря им удалось наладить производство леводопы — лекарства от паркинсонизма, в основе которого лежит L-аминокислота фенилаланин.

Но применение этой технологии не обходится без издержек для производителя: после того, как реакция закончилась и образовался продукт, смесь нужно очистить. «Очень много сложных лекарственных препаратов делается с катализом на палладии, — говорит Анаников, — это тяжелый металл, его примеси остаются [в препарате]. Естественно, никто не хочет покупать таблетки с палладием, это добром не кончится, поэтому надо чистить. А это очень дорого и тяжело».

Хирализуя катализатор

В то же самое время Дэвид Макмиллан шел к похожей идее совсем с другой стороны. Он пытался позаимствовать принцип работы не у ферментов, а у маленьких молекул, известных катализаторов, которые на на промежуточной стадии образуют временные комплексы с одним из реагентов.

Один из таких катализаторов, который часто используют и в промышленности, — это кислота Льюиса (например, AlCl3). Ни о какой хиральности применительно к хлориду алюминия говорить нельзя. Поэтому Макмиллан задался целью найти для кислоты Льюиса органический хиральный аналог.

В качестве модельной реакции Макмиллан его коллеги взяли реакцию Дильса — Альдера — присоединения к диену соединения с двойной связью. В качестве реагентов Макмиллан взял циклопентадиен и α,β-ненасыщенный альдегид.

мааам

Реакция Дильса — Альдера, для которой Макмиллан искал хирализующий катализатор 

В результате такой реакции образуется бициклическое соединение, в котором к соседним атомам углерода напротив двойной связи присоединены альдегидная группа и радикал с противоположного хвоста альдегида. В зависимости от того, как эти группы развернуты относительно мостика бицикла, может получиться два различных энантиомера.

В качестве катализатора Макмиллан решил использовать циклический вторичный амин. Такой катализатор цепляется к альдегиду — получается иминий, ион, в котором положительно заряженный атом азота соединен двойной связью с одним из соседних атомов углерода. Ключевая идея работы Макмиллана — в том, что на промежуточном этапе такой реакции образуется хиральный комплекс, что приводит к асимметрии реакции.

Фактически Макмиллан пришел к тому же выводу, что и Лист: если в каталитической реакции образуется промежуточный комплекс с хирально чистым катализатором, то из нехиральных реагентов можно получить хирально чистый продукт. Но пришел к этой идее, вводя хиральность в известный механизм катализа.